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Abstract. In this paper we begin by giving a description of functional methods of quantum
field theory for systems of interactingq-particles. These particles obey exotic statistics and
are theq-generalization of the coloured particles which appear in many problems of condensed
matter physics, magnetism and quantum optics. Motivated by the general ideas of standard field
theory we prove theq-functional analogues of Hori’s formulation of Wick’s theorems for the
different orderedq-particle creation and annihilation operators.The formulae have the same
formal expressions as fermionic and bosonic ones but differ by the nature of fields.This allows
us to derive the perturbation series for the theory and develop analogues of standard quantum
field theory constructions inq-functional form.

1. Introduction

During the last decade many mathematical structures have been deformed and have gained
the subscriptq in their notations. In this way remarkable mathematical objects such as non-
commutative geometries [1], quantum groups (q-groups) [2] and their representations on
quantum vector spaces [3] have arisen. These objects led to the investigations of the quantum
group gauge theory [4],q-deformed Schr̈odinger equation [5] and classical and quantum
dynamics onq-deformed phase spaces [6]. In [7, 8]q-deformed spaces were considered
as graded-commutative algebras. On this basis the classical and quantum dynamics onq-
deformed spaces were proposed in close analogy with the case ofZ2-commutative spaces
(Grassmann algebras) [8].

After quantization the particles satisfy theq-deformed commutation relations similar to
the commutation relations of the coloured particles [9]:

akaj ∓ qajak = 0 aka
+
j ∓ q−1a+j ak = 0 q = eiα 16 k < j 6 n

aka
+
k ∓ a+k ak = 1 and forq-deformed fermions [a+k ]2 = [ak]

2 = 0
(1)

where the upper sign corresponds to quantization onq-deformed common space and the
lower one corresponds to quantization onq-deformed Grassmann algebra. These particles
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were calledq-particles to distinguish them from the famousq-oscillators which a number
of papers are devoted to. Theseq-particles are the only objects that we consider.

It is surprising thatq-particles are interesting, not only from the mathematical point of
view but also from the physical one. Here we do not mean the appearance ofq-particles
in the parastatistics [7, 8, 10],q-extended supersymmetry [11], parasupersymmetry [10, 11]
and other similar problems because they are rather mathematical applications. By physical
applications we mean, first, solid state physics and quantum optics whereq-particles appear
in a natural way as well as the theory of magnetics where Paulions originally appeared and
play a central role.

In solid state physics, anyons (particles with exotic braiding statistics) are important
in some attempts to understand the physical features of planar systems [13]. The main
physical interest in anyon systems is their possible connection with some effects in two-
dimensional condensed matter physics, in particular in the quantum Hall effect [14] and
high temperature superconductivity [15] (in the framework of the investigations of thet-J
and Hubbard models).

In contrast to the previous example where anyons serve as auxiliary objects for the
construction of one of possible scenarios there is a wide field in the quantum nonlinear optics
in whichq-particles are the main components. This is a theory of the collective behaviour of
excitons with small radius (Frenkel excitons and charge-transfer excitons (CTE)) [16]. The
studies investigate possibilities of formation of the Frenkel biexcitons and the observation
of phase transitions in exciton systems in molecular crystals (Bose–Einstein condensation
of excitons [17], structural phase transitions in crystals with high excitonic concentrations,
dielectric-metal phase transition in a system of interacting CTE [18] and others). Strictly
speaking excitons are not particles, they are quasiparticles describing molecular excitations
and are of great importance in the analysis of nonlinear optical processes which accompany
propagation of high-intensity light fluxes whose frequencies are in the range of the exciton
absorption bands [19]. Moreover, excitons obey exotic statistics (Pauli statistics) [20]
coinciding withq-particles statistics forq = −1. The general case ofq = eiα arises if we
try to take into account phenomenologically some nonlinear effects (such as the difference
in the creation time of molecular excitations for different types of molecules). This effect
can be modelled by changing the Paulion commutation relations to those of theq-particles
using the method developed in [21].

Surprisingly, even the investigation of the behaviour of low-dimensional exciton systems
is meaningful. For example the exact solutions for one-dimensional Paulion chains [22]
caused great advances in the theory of the so-calledJ -aggregates, i.e. molecular aggregates
with unusually sharp absorption bands ([23] and references therein). The investigations
of exciton systems on interfaces closely connect with the successes of contemporary
technology. All these show thatq-particles find deep applications in modern physical
theories and motivate our objective to derive the appropriate field theoretical technique for
them. The technique is developed in [24].

This paper is organized as follows. In section 2 we motivate the necessity for the
introduction ofq-ordered objects (such as the normal product) and introduce useful notation.
In sections 3 and 4 we prove Wick’s theorems inq-functional form for the simple product
andq-symmetrical products ofq-operators (q-symmetrical andq-chronological products).
This allows us to find, in section 5, the Wick’s theorems for theq-operator functionals.
Section 6 contains the conclusions and some remarks.
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2. Motivation and notations

In this section we motivate the necessity to introduceq-objects (such as N-, T-products of
q-operators and others) which we study in the following sections. We also define ‘universal’
notations following [25] that allow us to prove Wick’s theorems for the cases ofq-operators
with internal degrees of freedom (spin, colours) in the unified way.

As in the usual Fermi–Bose situation, inq-particle physics we are interested in two
kinds of physical quantities. The first one is, generally speaking, the class of equilibrium
thermodynamical characteristics calculated via the partition function of the system. The
second one is a set of correlators which are important when describing the kinetics.

For clarity we consider a system ofq-particles with creation (annihilation) operators
obeying the commutation relations (1). The equilibrium thermodynamics of the model is
described by the statistical operatorρ = e−βH and the partition functionZ = Tr ρ. In
close analogy with undeformed many-particle quantum theory there are several approaches
for calculatingZ. The comparative convenience of each of them is defined by the specific
features of the system in question. The most straightforward way is to presentρ by the
series

ρ =
∞∑
n=0

(−β)n
n!

Hn

and to find matrix elements of the operatorsHn in the occupation number basis
{|ϕi1,i2,...,im〉} = {a+i1a+i2 . . .a+im |0〉} and then to try to calculate the sum of all diagonal matrix
elements in this basis. Usually it is difficult enough to calculate the sum in a closed form.

To escape this problem one can introduce the basis coherent states corresponding
to creation (annihilation) operators (1) [26]. These states use elements of the graded-
commutative algebraHQ0|L (or HQL|0 in the bosonic case) as parameters. By proceeding
in this way we need to calculate matrix elements of the operator in the Bargmann–Fock
representation. This means that we need to find a representation of the operator in N-
ordering form in which all creation operators are on the right-hand side with respect to all
annihilation operators in all monomial terms. This can be done by using the Wick’s theorem
for q-operators in the same way as it was done for the usual Fermi–Bose statistics [25].
The next section is devoted to the formulation and proof of the theorem.

It is a very natural idea to use the objects of the non-commutative algebra for the
investigations of systems with quantum particles obeying some exotic statistics. The first
example of its useful application is in fermionic physics. Moreover, all functional methods
of quantum bosonic field theory can be modified for the treatment of quantum fermionic
fields using Grassmann variables instead of the usual complex numbers. This allows us
to hope that the methods can be adopted for particles with exotic statistics (q-statistics) if
permutation relations for the classical analogues are defined according to the rules of the
statistics. In this way we can obtain a self-consistent scenario for building the quantum
field theory (QFT) of particles with exotic statistics.

In this paper we consider creation and annihilation operators obeying the following
commutation relations which generalize (1):

â(x)â(y)− κq(x,y)â(y)â(x) = 0

â†(x)â†(y)− κq(x,y)â†(y)â†(x) = 0

â(x)â†(y)− κq∗(x,y)â†(y)â(x) = δ(x,y)
[â(x)]2 = [â†(x)]2 = 0 for q-fermions.

 (2)
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This form allows us to consider continuous indices as well as discrete ones.x andy are
in generalD-dimensional vectors (or/andD-dimensional multi-indices for a lattice) which
describe external and internal degrees of freedom. The functionδ(x,y) is a δ-function
δ(x − y) for a continuous space and Kroneckerδ-function for a lattice or internal colour
indices. The statistical factorq(x,y) possesses the following generalized Paulionic and
anyonic property:

q(x,y) = q−1(y,x) = q∗(y,x) q(x,x) = 1. (3)

Finally κ serves to unify formulae for deformed bosonic and deformed fermionic cases. As
usual it has the form:

κ =
{
+1 for q-bosons

−1 for q-fermions.
(4)

Hereafter letters with hats denote operators and those without hats denote the corresponding
classical variables. For operator algebra (2) the corresponding classical variables satisfy the
following permutation relations:

a(x)a(y)− κq(x,y)a(y)a(x) = 0

a†(x)a†(y)− κq(x,y)a†(y)a†(x) = 0

a(x)a†(y)− κq∗(x,y)a†(y)a(x) = 0

[a(x)]2 = [a†(x)]2 = 0 for q-fermions.

 (5)

Let us introduce ‘universal’ notations to avoid repetitions and enable us to formulate
statements in unified form for different cases. Following [25] we collect the creation and
annihilation operators into the single vector ‘field’ operator:

ϕ̂(x) =
(
â†(x)
â(x)

)
x ≡ (s,x) (6)

such that the additional vector indexs indicates a type of operator (â† (when s = 1) or â
(when s = 2)). It is convenient to represent quantities by vectors or matrices with respect
to the indexs.

Using this notation the commutation relations (2) can be rewritten in the following form:

ϕ̂(x)ϕ̂(y)− κQ(x, y)ϕ̂(y)ϕ̂(x) = u(x, y)
[ϕ̂(x)]2 = 0 for q-fermions

}
(7)

where the statistical matrixQ(x, y) is defined by statistical factorq(x,y):

Q(x, y) =
(
q(x,y) q∗(x,y)
q∗(x,y) q(x,y)

)
(8a)

and the quantum deformation parameter matrix is given by the equality:

u(x, y) = δ(x,y)
(

0 −κ
1 0

)
. (8b)

The row number of the matrices from (8a) and (8b) corresponds tosx and the column number
to sy . We can now associate classical analogues—classical vector ‘field’ variables—with
the corresponding vector ‘field’ operator. For the classical variables we get the permutation
relations in the following ‘universal’ form:

ϕ(x)ϕ(y)− κQ(x, y)ϕ(y)ϕ(x) = 0

[ϕ(x)]2 = 0 for q-fermions

}
(9)
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which is defined by the statistical matrixQ(x, y) from (8a).

To formulate Wick’s theorems in the functional form we need to introduce left(
→
∂

∂ϕ(x)
)

and right (
←
∂

∂ϕ(x)
) functional derivatives on the algebra (9). We do as was done for the

Grassmann algebra case: to act by the left (right) derivative on an expression we must
bring the corresponding variable to the extremely left (right) position in accordance with
the permutation relations and cancel it. This leads to the following commutation relations
for the left derivative:

→
∂

∂ϕ(x)
ϕ(y)− κQ∗(x, y)ϕ(y)

→
∂

∂ϕ(x)
= δ(x, y) (10)

whereδ(x, y) = δsx ,sy δ(x,y).
To construct Hori’s functional expressions we will also need extended algebras which

will contain several copies of the algebra of our vector ‘field’ variables as subalgebras. We
define mutual permutation relations for the subalgebras to keep the graded-commutative
structure. For example, the pair of fieldsϕ1(x), ϕ2(x) like (9) from different subalgebras
commute with one another as follows

ϕ1(x)ϕ2(y)− κQ(x, y)ϕ2(y)ϕ1(x) = 0. (11)

We are now ready to proceed with Wick’s theorems for operators (7).

3. Wick’s theorem for the simple product of q-operators

In this section we formulate and prove the analogue of Hori’s formula [27] which gives
the functional form of the Wick’s theorem for the normal form of a simple product of
the creation and annihilation (or vector ‘field’) operators.The formal expression does not
depend on the statistics of the fields.It shows that the exotic statistics can be taken into
account by changing the permutation relations for the classical analogues according to the
rules of the statistics and keeping the formal expression for Hori’s formulae.

As was said above, we define the normal form N(A) of the monomial operatorA as
an expression where all creation operators are placed on the left-hand side in respect to the
annihilation operators (using permutation relations (5)). Then the definition is generalized
for an arbitrary polynomial operator by linearity. The definition is standard [25].

As usual we can do this in the vector ‘field’ form (in the ‘universal’ notations) where
the final expressions only contain the normal contractionsn(x, y). For the pair of ‘field’
operators the normal product is defined by the following relation:

N[ϕ̂(x)ϕ̂(y)] = ϕ̂(x)ϕ̂(y)− n(x, y). (12)

For systems like (2), the normal contraction hence has the form:

n(x, y) = δ(x,y)
(

0 0
1 0

)
. (13)

We note that the normal contraction has aδ-functional (orδ-symbol) character with respect
to the indices. In the following we will frequently use this fact. More precisely we will use
the fact that the productϕ(x)ϕ(y) is aC-number function whenn(x, y) 6= 0.

We now prove the following theorem which reduces the simple operator product to the
normal form.
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Theorem 1.

ϕ̂(x1) . . . ϕ̂(xn) = N

[∏
i<k

(
1+

←
∂

∂ϕi
n

←
∂

∂ϕk

)
ϕ1(x1) . . . ϕn(xn)

∣∣∣∣
...

]
(14)

where:
(1) the variablesϕ1, . . . , ϕn form the extended algebra (9) following equation (11);
(2) the symbol|... means substitutionϕ1 = · · · = ϕn = ϕ̂;
(3) substituting the differential forms into equation (14) in expanded form we have

∂

∂ϕi
n
∂

∂ϕk
=
∑
x,x ′

∂

∂ϕi(x)
n(x, x ′)

∂

∂ϕk(x ′)
(15)

(here the symbol
∑

x means summation over discrete variables and integration over
continuous ones).

Proof. The strategy of the proof coincides with that of the proof of the Fermi–Bose Hori’s
formulae [25] and is fulfilled by induction. Indeed, for the particular casesn = 1, 2 the
statement can be proved immediately:

ϕ̂(x) = N[ϕ̂(x)]

ϕ̂(x1)ϕ̂(x2) = N[ϕ̂(x1)ϕ̂(x2)+ n(x1, x2)]

}
(16)

by the application of the definitions of the normal form and the normal contraction (12),
(13).

Let us now assume that equation (14) is true for anyn 6 N and consider the product
of N + 1 operatorsϕ̂(x1) . . . ϕ̂(xN+1).

(1) If the field ϕ̂(xN+1) contains only the second componentâ(xN+1) then

ϕ̂(x1) . . . ϕ̂(xN+1) = ϕ̂(x1) . . . ϕ̂(xN)â(xN+1). (17)

By the inductive assumption the firstN multipliers on the right-hand side of equation (17)

can be mapped to the normal form by the following reduction operator
←
PN :

←
PN =

∏
16i<k6N

(
1+

←
∂

∂ϕi
n

←
∂

∂ϕk

)
. (18)

Then the full expression (17) also takes the normal form. It is not difficult to see that due
to the structure of normal contraction (13) the differential expression (15) in (14) does not

contain the derivative on̂ϕ(2)(xN+1) = â(xN+1). Hence the terms with derivative
←
∂

∂ϕN+1
do

not contribute in this case. So we can substitute
←
PN by

←
PN+1 which completes the proof

for this case.
(2) Let us now consider the case ofϕ̂(xN+1) = â†(xN+1). Using N times the

commutation relations (7) we obtain the following relation:

ϕ̂(x1) . . . ϕ̂(xN+1) = Qâ†(xN+1)ϕ̂(x1) . . . ϕ̂(xN)+
N∑
k=1

Qkn(xk, xN+1)[ϕ̂(x1) . . . ϕ̂(xN)]k

(19)

where [ϕ̂(x1) . . . ϕ̂(xN)]k means product̂ϕ(x1) . . . ϕ̂(xN) without multiplier ϕ̂(xk) and the
following notations

Q = κNQ(x1, xN+1) . . .Q(xN, xN+1)

Qk = κN−kQ(xk+1, xN+1) . . .Q(xN, xN+1)
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are introduced. The multipliersQ andQk reflect theq-deformation of the statistics and
are due to the commutation relations (7). The first summand on the right-hand side of
equation (19) can be rewritten as

N[Qâ†(xN+1) ·
←
PNϕ1 . . . ϕN |...]. (20)

Note that under the sign of the normal products (20) the operatorâ†(xN+1) can be substituted
by the corresponding classical variable. Then if we move the variablea†(xN+1) to the
original (right) position into expression (20) we gain the statistical multiplierQ−1 which

exactly cancels the multiplierQ. This is because the reduction operator
←
PN commutes with

a†(xN+1) due to theδ-character of the normal contraction and the permutation relations for
the classical analogues give the same statistical phases as the quantum ones. So

Qâ†(xN+1)ϕ̂(x1) . . . ϕ̂(xN) = N[
←
PNϕ1 . . . ϕN+1|...]. (21)

Now consider the second summand on the right-hand side of (19). By applying the inductive
assumption and substituting normal contraction by the expression in parentheses we get:

N

[ N∑
k=1

Qk

( ←
∂

∂ϕk
n

←
∂

∂ϕN+1
ϕkϕN+1

)
←
PN [ϕ1 . . . ϕN ]k

∣∣∣∣
...

]
.

Product [ϕ1 . . . ϕN ]k does not contain fieldsϕk, ϕN+1. Using arguments similar to those for
the derivation of (21) we can move them to thier original position and get

N

[ N∑
k=1

←
∂

∂ϕk
n

←
∂

∂ϕN+1

←
PNϕ1 . . . ϕN+1

∣∣∣∣
...

]
. (22)

Collecting together equations (19), (21) and (22) we get

ϕ̂(x1) . . . ϕ̂(xN+1) = N[
←
PN+1ϕ1 . . . ϕN+1|...]. (23)

Hence the proof of theorem 1 is complete. �

Corollary 1.1. Due to the linearity of expression (14) on each variableϕi formulae (14) can
be rewritten in the following form:

ϕ̂(x1) . . . ϕ̂(xn) = N

[
exp

[∑
i<k

←
∂

∂ϕi
n

←
∂

∂ϕk

]
ϕ1(x1) . . . ϕn(xn)

∣∣∣∣
...

]
. (24)

Below we will use this relation to find the compact functional form for the Wick’s theorems
for the symmetrical and chronological products.

Corollary 1.2. Formulae (14), (24) hold true if we substitute right derivatives by left ones,
sign ‘<’ in product limits by ‘>’ and normal contractionn by nT.

Note here that the formal form of the statement of theorem 1 does not depend on any
statistics (i.e. it is the same as in fermionic and bosonic cases) and the commutation factors
are ‘hidden’ in the nature of the classical variables. It is useful to remember this when
studying all other theorems of the paper where it is also true.
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4. Wick’s theorem for q-symmetrical products

In this section we consider other kinds of products, in particular,q-symmetrical andq-
chronological. Such products naturally play the role of the usual symmetrical for bosons
(antisymmetrical for fermions) and chronological products in the framework of the standard
quantum field theory. Moreover, they are interesting by themselves because they keep the
symmetry properties of theq-operators.

In close analogy with the undeformed cases we defineq-symmetrical product (Symq-
product) ofq-operators in the following way

Symq [ϕ̂(x1) . . . ϕ̂(xn)] = 1

n!

∑
P

QPP [ϕ̂(x1) . . . ϕ̂(xn)]. (25)

The sum is taken over alln! permutationsP of the q-operatorsϕ̂ with corresponding
statistical phasesQP . TheseQP are the factors arising from permutation of operators from
the original order to the orderP . We assume that under the permutationq-operatorsϕ̂
are replaced by the corresponding classical variablesϕ̂ → ϕ and we do not pick up the
expressions due to the right-hand side of equation (7). In other words,QP is defined from
the relation

ϕ(x1) . . . ϕn(xn) = QPP [ϕ(x1) . . . ϕn(xn)]. (26)

We now consider theq-chronological product. We assume thatq-operatorsϕ̂ also depend
on time t and defineq-chronological product (or Tq-product) of theq-operators by the
equation (all timesti are assumed to be different):

Tq [ϕ̂(x1) . . . ϕ̂(xn)] =
∑
P

QPP [θ(1 . . . n)ϕ̂(x1) . . . ϕ̂(xn)] (27)

where then-point θ -function is given by the relation:

θ(1 . . . n) ≡
n−1∏
k=1

θ(tk − tk+1). (28)

The summation in equation (27) is taken over all simultaneous permutations of the operators
ϕ̂(xi) and the corresponding timesti in θ -function.

If all or any part of the argumentsti of the operators are equal then the Tq-product is
not rigorously defined. We need to complete the definition. We define the Tq-product under
equal times as the Symq-product. An action of Symq- and Tq-products on zeroth power of
operators is defined as usual by the equalities: Symq [1] = Tq [1] = 1.

We would like to note that Symq and Tq (similar to N) are not true linear operators

on the space of the field operators: an operator equalityF̂1 = F̂2 is not followed by the
equalities TqF̂1 = TqF̂2 or Symq F̂1 = Symq F̂2 (because the field operators in the argument
of operations Tq,Symq,N behave themselves as the classical variables).

We call a productq-symmetricif under permutation multipliers (q-operators) in the
product it behaves in the same manner as if theq-operators would be classical variables, i.e.
only the corresponding statistical phase appears (26). This definition naturally generalizes
the notion of (anti)symmetry of the field operator products in the Bose (Fermi) case. For
example, the normal product isq-symmetric

N[ϕ̂(x1) . . . ϕ̂(xn)] = QPN[P {ϕ̂(x1) . . . ϕ̂(xn)}]. (29)
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It is also not difficult to check that the Symq- and Tq-products introduced above areq-
symmetric:

Symq [ϕ̂(x1) . . . ϕ̂(xn)] = QP Symq [P {ϕ̂(x1) . . . ϕ̂(xn)}]
Tq [ϕ̂(x1) . . . ϕ̂(xn)] = QPTq [P {ϕ̂(x1) . . . ϕ̂(xn)}].

(30)

To formulate the functional form of the Wick’s theorem for the above-defined products
we need to introduce theq-chronological contraction1q(x, y) and theq-symmetrical
contraction (or theq-symmetric part of the normal contractionn) nqs . They are defined
by the relations

Tq [ϕ̂(x)ϕ̂(y)] = N[ϕ̂(x)ϕ̂(y)] +1q(x, y) (31)

Symq [ϕ̂(x1)ϕ̂(x2)] = N[ϕ̂(x1)ϕ̂(x2)] + nqs (x1, x2). (32)

Using definitions (12), (25), (27) we get expressions for the contraction via the normal
one (13):

1q = θ(12)n+ κQθ(21)nT = θ(12)n(x1, x2)+ κQ(x1, x2)θ(21)n(x2, x1) (33)

nqs = 1
2[n+ κQnT] = 1

2[n(x1, x2)+ κQ(x1, x2)n(x2, x1)]. (34)

Due to our definition of theq-chronological product on equal times we have

1q(x1, x2)|t1=t2 = nqs (x1, x2)|t1=t2. (35)

We wish to note that theq-chronological contraction (similar tonqs ), in contrast to the
normal contractionn, has the property ofq-symmetry, i.e.1q = κQ1T

q .
We are now ready to formulate the Wick’s theorem forq-symmetric products which

gives the Symq- and Tq-products in the normal form.

Theorem 2.

Symq [ϕ̂(x1) . . . ϕ̂(xn)] = N

exp

(
1

2

←
∂

∂ϕ
n

←
∂

∂ϕ

)
ϕ(x1) . . . ϕ(xn)

∣∣∣∣∣
ϕ=ϕ̂

 (36)

Tq [ϕ̂(x1) . . . ϕ̂(xn)] = N

exp

( ←
∂

∂ϕ
1q

←
∂

∂ϕ

)
ϕ(x1) . . . ϕ(xn)

∣∣∣∣∣
ϕ=ϕ̂

 . (37)

The proof can be performed in close analogy with the undeformed case [25] and the proof
of theorem 1.

Corollary 2.1. The normal contractionn in equation (36) can be replaced bynqs from (34)
due to the fact that the kernel of the differential operation is automatically symmetrized:

∂

∂ϕi
n
∂

∂ϕk
= ∂

∂ϕk
κQnT ∂

∂ϕi

∂

∂ϕ
n
∂

∂ϕ
= ∂

∂ϕ
nqs

∂

∂ϕ
.

5. Wick’s theorems for q-operator functionals

To describe the Green function technique and perturbation theory for the systems of the
q-deformed particles we also need the rules for finding the normal form not only of the
products of the operators but the whole functionals as well. Aq-operator expressionF(ϕ̂)
is said to beq-operator functionalif it has the following form:

F(ϕ̂) =
∞∑
n=0

∫
. . .

∫
dx1 . . .dxn Fn(x1, . . . , xn)ϕ̂(x1) . . . ϕ̂(xn). (38)
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The operator functional is completely defined by the set of its (may be generalized
and singular) coefficient functionsFn(x1 . . . xn). We will call an operator functionalq-
symmetricalif all its coefficient functions satisfy the following relations:

Fn(. . . xi . . . xk . . .) = Q−1
ik Fn(. . . xk . . . xi . . .)

. . . ϕ(xi) . . . ϕ(xk) . . . = Qik(. . . ϕ(xk) . . . ϕ(xi) . . .).
(39)

Classical functionals (which are obtained from the operator one by replacingϕ̂ by ϕ)
correspond to theq-symmetrical operator functional.q-symmetrical coefficient functions
are uniquely determined by the classical functional. Note also that anyq-symmetrical
functional possesses the propertyF(ϕ̂) = Symq F (ϕ̂). We call an operator functionalF(ϕ̂)
asan operator functional in normal formif it possesses the propertyF(ϕ̂) = N[F(ϕ̂)].

We emphasize that operator functionals are defined just by their coefficient functions
(not by operatorF(ϕ̂)). The functionsFn determine operatorF(ϕ̂) uniquely but the opposite
statement is not true in general.

Formulae (36) and (37) are generalized directly to operator functionals due to the
‘universality’ of the reduction operation (we assume that operator functionals do not contain
time derivatives, although all considerations can be extended to this case). Thus we obtain
the following rules for reducing operator functionals to the normal form which we collate
into theorem 3.

Theorem 3.

Symq F (ϕ̂) = N exp

(
1

2

←
∂

∂ϕ
n

←
∂

∂ϕ

)
F(ϕ)

∣∣∣∣∣
ϕ=ϕ̂

(40)

TqF (ϕ̂) = N exp

( ←
∂

∂ϕ
1q

←
∂

∂ϕ

)
F(ϕ)

∣∣∣∣∣
ϕ=ϕ̂

. (41)

Corollary 3.1. From these various formulae, the inverse and combined transformations can
be easily found. For example

NF(ϕ̂) = Symq exp

(
−1

2

←
∂

∂ϕ
n

←
∂

∂ϕ

)
F(ϕ)

∣∣∣∣∣
ϕ=ϕ̂

(42a)

TqF (ϕ̂) = Symq exp

(
1

2

←
∂

∂ϕ
(1q − n)

←
∂

∂ϕ

)
F(ϕ)

∣∣∣∣∣
ϕ=ϕ̂

. (42b)

We proceed with the consideration of the normal form of a product of the operator
functionals. We formulate the Wick’s theorem for the product of operator functionalsin
normal form.

Theorem 4.

n∏
k=1

[F (k)(ϕ̂)] = N

{
exp

[∑
i<k

←
∂

∂ϕi
n

←
∂

∂ϕk

] n∏
k=1

F (k)(ϕk)

∣∣∣∣
...

}
. (43)

Hereafter the non-commuting multipliers are believed to be ordered in accordance with
increasing index:

n∏
k=1

[F (k)(ϕ̂)] ≡ F (1)(ϕ̂), . . . , F (n)(ϕ̂). (44)
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Corollary 4.1. Starting from the basic Wick’s theorem (14) and arguing as when deriving
equation (36) one can obtain the following rule of reduction of a product ofq-symmetrical
functionalsto the normal form:

n∏
k=1

[Symq F
(k)(ϕ̂)] = N

{
exp

[
1

2

∑
i

←
∂

∂ϕi
n

←
∂

∂ϕi
+
∑
i<k

←
∂

∂ϕi
n

←
∂

∂ϕk

] n∏
k=1

F (k)(ϕk)

∣∣∣∣
...

}
. (45)

Corollary 4.2. Equation (45) is obviously generalized to the case when some multipliers on
the left-hand side are given in the N-form (not Symq-form):

n∏
k=1

[AF (k)(ϕ̂)] = N

{
exp

[
1

2

∑
Symq

←
∂

∂ϕi
n

←
∂

∂ϕi
+
∑
i<k

←
∂

∂ϕi
n

←
∂

∂ϕk

] n∏
k=1

F (k)(ϕk)

∣∣∣∣
...

}
. (46)

HereA denotes Symq or N and summation in the diagonal terms of the quadratic form is
only over functionals that stand in Symq-form.

If a product of operator functionals stands under the common sign of someq-
symmetrical product (Symq or Tq) it is automaticallyq-symmetrized and one can use the
usual formulae (40) and (41). For example,

Tq

[ n∏
k=1

F (k)(ϕ̂)

]
= N exp

( ←
∂

∂ϕ
1q

←
∂

∂ϕ

)
n∏
k=1

F (k)(ϕk)

∣∣∣∣
ϕ=ϕ̂

. (47)

In conclusion we note that it is possible to complete the definition of the Tq-product not
via the Symq-product but by using the N-form. This is equivalent to the definition of
the θ -function entering into the chronological contraction under coincided times as follows
θ(t12)|t1=t2 = 0. It is not difficult to check that formula (37) remains true under this
convention. The same can be said about formula (41) but the classical functional entering
into this formula should represent N-form of the correspondingq-operator functional, i.e.
F(ϕ̂) = NF(ϕ̂).

6. Conclusion

In this paper we have formulated Wick’s theorems for generalq-operators andq-operator
functionals. The formal expression does not depend on the statistics of the fields and
the statistical aspect is revealed only when the nature of the algebra of the corresponding
classical variables is defined. This implies that the functional approach to the Wick’s
theorems using the analogue of the Hori’s formulae is the most natural one. Moreover, the
theorems of the paper show that it is possible to take into account the exotic statistics keeping
the formal expression for the Hori’s formulae and changing the permutation relations for
the classical analogues according to the rules of the statistics. This fact will allow us to
derive the perturbation series for the theory and develop analogous constructions of standard
quantum field theory inq-functional form in a straightforward way (see [24] for details).
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